Graph convolutional neural networks via scattering
نویسندگان
چکیده
منابع مشابه
Graph Convolutional Neural Networks via Scattering
We generalize the scattering transform to graphs and consequently construct a convolutional neural network on graphs. We show that under certain conditions, any feature generated by such a network is approximately invariant to permutations and stable to graph manipulations. Numerical results demonstrate competitive performance on relevant datasets.
متن کاملAdaptive Graph Convolutional Neural Networks
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking dat...
متن کاملKernel Graph Convolutional Neural Networks
Graph kernels have been successfully applied to many graph classification problems. Typically, a kernel is first designed, and then an SVM classifier is trained based on the features defined implicitly by this kernel. This two-stage approach decouples data representation from learning, which is suboptimal. On the other hand, Convolutional Neural Networks (CNNs) have the capability to learn thei...
متن کاملConvolutional Neural Networks Via Node-Varying Graph Filters
Convolutional neural networks (CNNs) are being applied to an increasing number of problems and fields due to their superior performance in classification and regression tasks. Since two of the key operations that CNNs implement are convolution and pooling, this type of networks is implicitly designed to act on data described by regular structures such as images. Motivated by the recent interest...
متن کاملMIMO Graph Filters for Convolutional Neural Networks
Superior performance and ease of implementation have fostered the adoption of Convolutional Neural Networks (CNNs) for a wide array of inference and reconstruction tasks. CNNs implement three basic blocks: convolution, pooling and pointwise nonlinearity. Since the two first operations are welldefined only on regular-structured data such as audio or images, application of CNNs to contemporary da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2020
ISSN: 1063-5203
DOI: 10.1016/j.acha.2019.06.003